Jets aren’t just a game of tag anymore

Article: Probing Quarkonium Production Mechanisms with Jet Substructure
Authors: Matthew Baumgart, Adam Leibovich, Thomas Mehen, and Ira Rothstein
Reference: arXiv:1406.2295 [hep-ph]

“Tag…you’re it!” is a popular game to play with jets these days at particle accelerators like the LHC. These collimated sprays of radiation are common in various types of high-energy collisions and can present a nasty challenge to both theorists and experimentalists (for more on the basic ideas and importance of jet physics, see my July bite on the subject). The process of tagging a jet generally means identifying the type of particle that initiated the jet. Since jets provide a significant contribution to backgrounds at high energy colliders, identifying where they come from can make doing things like discovering new particles much easier. While identifying backgrounds to new physics is important, in this bite I want to focus on how theorists are now using jets to study the production of hadrons in a unique way.

Over the years, a host of theoretical tools have been developed for making the study of jets tractable. The key steps of “reconstructing” jets are:

  1. Choose a jet algorithm (i.e. basically pick a metric that decides which particles it thinks are “clustered”),
  2. Identify potential jet axes (i.e. the centers of the jets),
  3. Decide which particles are in/out of the jets based on your jet algorithm.

 

Figure 1: A basic 3-jet event where one of the reconstructed jets is found to have been initiated by a b quark. The process of finding such jets is called "tagging."
Figure 1: A basic 3-jet event where one of the reconstructed jets is found to have been initiated by a b quark. The process of finding such jets is called “tagging.”

Deciphering the particle content of a jet can often help to uncover what particle initiated the jet. While this is often enough for many analyses, one can ask the next obvious question: how are the momenta of the particles within the jet distributed? In other words, what does the inner geometry of the jet look like?

There are a number of observables that one can look at to study a jet’s geometry. These are generally referred to as jet substructure observables. Two basic examples are:

  1. Jet-shape: This takes a jet of radius R and then identifies a sub-jet within it of radius r. By measuring the energy fraction contained within sub-jets of variable radius r, one can study where the majority of the jet’s energy/momentum is concentrated.
  2. Jet mass: By measuring the invariant mass of all of the particles in a jet (while simultaneously considering the jet’s energy and radius) one can gain insight into how focused a jet is.
Figure 2: A basic way to produce quarkonium via the fragmentation of a gluon. The interactions highlighted in blue are calculated using standard perturbative QCD. The green zone is where things get tricky and non-perturbative models that are extracted from data must be used.
Figure 2: A basic way to produce quarkonium via the fragmentation of a gluon. The interactions highlighted in blue are calculated using standard perturbative QCD. The green zone is where things get tricky and non-perturbative models that are extracted from data must often be used.

One way in which phenomenologists are utilizing jet substructure technology is in the study of hadron production. In arXiv:1406.2295, Baumgart et. al. introduced a way to connect the world of jet physics with the world of quarkonia. These bound states of charm-anti-charm or bottom-anti-bottom quarks are the source of two things: great buzz words for impressing your friends and several outstanding problems within the standard model. While we’ve been studying quarkonia such the J/\psi(c\bar{c}) and the \Upsilon(b\bar{b}) for a half-century, there are still a bunch of very basic questions we have about how they are produced (more on this topic in future bites).

This paper offers a fresh approach to studying the various ways in which quarkonia are produced at the LHC by focusing on how they are produced within jets. The wealth of available jet physics technology then provides a new family of interesting observables. The authors first describe the various mechanisms by which quarkonia are produced. In the formalism of Non-relativistic (NR) QCD, the J/\psi for example, is most frequently produced at the LHC (see Fig. 2) when a high energy gluon splits into a c\bar{c} pair in one of several possible angular momentum and color quantum states. This pair then ultimately undergoes non-perturbative (i.e. we can’t really calculate them using standard techniques in quantum field theory) effects and becomes a color-singlet final state particle (as any reasonably minded particle should do). While this model makes some sense, we have no idea how often quarkonia are produced via each mechanism.

Figure 3: This plot from arXiv:1406.2295 shows how the probability that a gluon or quark fragments into a jet with a specific energy E that a contains a $latex J/\psi$ with a fraction $latex z$ of the original quark/gluon's momentum varies for different mechanisms. The spectroscopic notation should be familiar from basic quantum mechanics. It gives the angular momentum and color quantum numbers of the $latex q\bar{q}$ pair that eventually becomes quarkonium. Notice that for different values of z and E, the different mechanisms behave differently.
Figure 3: This plot from arXiv:1406.2295 shows how the probability that a gluon or quark fragments into a jet with a specific energy E that a contains a J/\psi with a fraction z of the original quark/gluon’s momentum varies for different mechanisms. The spectroscopic notation should be familiar from basic quantum mechanics. It gives the angular momentum and color quantum numbers of the q\bar{q} pair that eventually becomes quarkonium. Notice that for different values of z and E, the different mechanisms behave differently. Thus this observable (i.e. that mouth full of a probability distribution I described) is said to have discriminating power between the different channels by which a J/\psi is typically formed.

This paper introduces a theoretical formalism that looks at the following question: what is the probability that a parton (quark/gluon) hadronizes into a jet with a certain substructure and that contains a specific hadron with some fraction z of the original partons energy? The authors show that the answer to this question is correlated with the answer to the question: How often are quarkonia produced via the different intermediate angular-momentum/color states of NRQCD? In other words, they show that studying how the geometry of the jets that contain quarkonia may lead to answers to decades old questions about how quarkonia are produced!

There are several other efforts to study hadron production through the lens of jet physics that have also done preliminary comparisons with ATLAS/CMS data (one such study will be the subject of my next bite). These studies look at the production of more general classes of hadrons and numbers of jets in events and see promising results when compared with 7 TeV data from ATLAS and CMS.

The moral of this story is that jets are now being viewed less as a source of troublesome backgrounds to new physics and more as a laboratory for studying long-standing questions about the underlying nature of hadronization. Jet physics offers innovative ways to look at old problems, offering a host of new and exciting observables to study at the LHC and other experiments.

Further Reading

  1. The November Revolution: https://www.slac.stanford.edu/history/pubs/gilmannov.pdf. This transcript of a talk provides some nice background on, amongst other things, the momentous discovery of the J/\psi in 1974 what is often referred to the November Revolution.
  2. An Introduction to the NRQCD Factorization Approach to Heavy Quarkonium https://cds.cern.ch/record/319642/files/9702225.pdf. As good as it gets when it comes to outlines of the basics of this tried-and-true effective theory. This article will definitely take some familiarity with QFT but provides a great outline of the basics of the NRQCD Lagrangian, fields, decays etc.